The Effect of Nickel Doping on Calculation of the Optical Gap Energy and Urbach Energy in ZnO Thin Films
نویسندگان
چکیده
Investigation of new calculate depends on the controlled optical properties of nanomaterials. Understanding the growth mechanism and growth parameters of nanostructured materials is essential. ZnO is one of the most important semiconductor materials for its semiconducting characteristics. In the present paper, we investigated a new model by theoretical methods; it is based on correlation from the experimental data’s which was used in the calculation the optical gap energy and Urbach energies. These data’s were taken from papers previously published. From obtained relations found that the experimental data and theoretical calculation are in qualitative, which were supported with the variation of solution molarities and Nickel doping. We have obtained a high correlation coefficient in the estimation of the band gap energy is higher than 0.96 with compare of Urbach energy is changed from 0.84 of undoped to Ni doped ZnO film at 0.88. The measurements by these new models have agreed with minimum relative errors, it is found in the calculations of optical band gap does not exceed 4 %, and for Urbach energy are smaller than 20 and 10 % for undoped and Nickel doped ZnO films, respectively. So that the best estimation was found at the Nickel doped ZnO thin with maximum enhancement of minimum errors were limited to 3.3 and 13 % for the band gap and the Urbach energies, respectively. The decreases in the relative errors of undoped to Nickel doped films can be explained by the fewer defects and less disorder.
منابع مشابه
The effect of Ga-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis
In this research, zinc oxide thin films with gallium impurity have been deposited using the spray pyrolysis technique. The structural and optical properties of these films are investigated as a function of gallium doping concentrations. The ZnO and ZnO:Ga films grown at a substrate temperature of 350 ºC with gallium doping concentrations from 1.0 to 5.0.%. The XRD analysis indicated that ZnO f...
متن کاملEffects of Cobalt Doping on Optical Properties of ZnO Thin Films Deposited by Sol–Gel Spin Coating Technique
Cobalt (Co) doped Zinc Oxide (ZnO) thin films, containing different amountof Cobalt nanoparticles as the Co doping source, deposited by the sol–gel spin coatingmethod onto glass via annealing temperature at 400˚C, have been investigated by opticalcharacterization method. The effect of Co incorporation on the surface morphology wasclearly observed from scanning electron microscopy (SEM) images. ...
متن کاملEffect of the Sulfur Concentration on the Optical Band Gap Energy and Urbach Tail of Spray-Deposited ZnS Films
Zinc sulfide (ZnS) films were deposited through a simple and low cost spray pyrolytic technique using mixed aqueous solutions of zinc nitrate and thiourea. The structural and optical properties of these films were investigated as a function of initial (Zn:S) molar ratio in the precursor solution, which varied between (1:1) and (1:3). X-ray diffraction (XRD) analysis revealed that wurtzite...
متن کاملOPTICAL PROPERTIES OF CO-EVAPORATED THIN FILMS OF BINARY Bi 0-Te 0 AND Bi 0 -V 0 SYSTEMS
Thin films of binary Bi 0 -TeO and Bi 0 -V 0 systems were prepared by the thermal co-evaporation technique in a vacuum at room temperature. The optical absorption edge of these systems are studied in the wavelength of 200-800 nm using a PERKIN-ELMER uv/Vis spectrophotometer. It is found that the value of n=3/2 in the Davis-Mott equation is best fitted for the fundamental absorption edge f...
متن کاملUltraviolet detectors based on annealed zinc oxide thin films: epitaxial growth and physical characterizations
In this report, ultraviolet (UV) detectors were fabricated based on zinc oxide thin films. The epitaxial growth of zinc oxide thin films was carried out on bare glass substrate with preferred orientation to (002) plane of wurtzite structure through radio frequency sputtering technique. The structural properties indicated a dominant peak at 2θ=34.28º which was matched with JCPDS reference card N...
متن کامل